Marubeni Citizen-Cincom
Published

Beefed-Up Backworking on New CNC Multi-Spindle

This CNC multi-spindle automatic lathe includes a quillstock with six tool carriers and one counter spindle opposite the main six-spindle drum, allowing machining of complex workpieces in a single process.

Share

The new MS40P CNC multi-spindle automatic lathe from Index Corp. includes a quillstock with six tool carriers and one counter spindle opposite the main six-spindle drum, making it possible to machine complex workpieces requiring many tools with the highest precision in a single process.

The flexibility and capability of the machine is well-suited for batch production and for machining families of parts; the front and rear end machining options permit efficient, complete machining of production parts with complex geometry and/or extensive operations on the cutoff end.

The core of the machine is its compact spindle drum. Six fluid-cooled, infinitely variable hollow-shaft motors are able to drive as much as 40-mm barstock independently from each other. Other characteristics of the spindle drum are high torque, small frame size, maintenance-free operation, and an advanced synchronous design. The enhanced machine concept is based on the added A side (drum side) and an opposite quillstock on the B side.

Besides the tool carriers at the spindle drum side of the machine, six additional tool carriers and a counter spindle are located in the rigid monoblock quillstock. The tool carrier arrangement in the working area without a longitudinal slide block allows the use of more than one tool on each spindle.

The working area is clean and can be easily accessed through sliding doors on both sides of the machine. This is convenient for the user and greatly reduces setup time. Chips drop directly into the base of the machine. 

The machine’s modular system allows, on the A side, customer-specific configuration of as many as 12 hydrostatic bearing-supported CNC cross-slides, several Y axes, and numerous stationary and live tools (for front-side machining), permitting a range of machining in a single setup, including off-center drilling, deep-hole drilling, thread cutting, angular drilling, cross drilling, contour milling, gear hobbing, and multi-edge turning. These are only a few of the many possibilities.

The characteristic V-shaped arrangement of the tool carriers means the optimum machining sequence is the only factor determining the process. For example, external and internal machining operations using stationary or live tools can be performed in every station.

During machining, users can program the optimum speed for each independent spindle, which can be varied during cutting. The result is excellent surface quality, short production times per piece and extended tool life. It is also possible to make speed changes during drum indexing, thus avoiding any additional secondary processing times. This capability also makes it possible to machine difficult materials that previously were hardly suitable for multi-spindle machines.

Should the machining options on the A side (spindle drum) not be sufficient, the extensions on the B side quill version come into play. Spindle positions 1 to 5 each have slides that can be used to machine the workpieces on the A side.

In position 6, there is a counterspindle traversing in the Z direction, so users can machine workpieces in positions 6.2 and 6.4. The slide 6.2 can also be used for machining the A-side or for rear end machining on the counterspindle with as many as three tools.

Tool position 6.4 also features a back-boring slide that can be equipped with three boring or turning tools, or with live tools. In total, as many as three tools can be used on the A-side, and another six tools are available for backwork machining.

Another advantage is the large Z-travel distance of the counterspindle, allowing longitudinal and transverse machining of longer workpieces (shaft parts).

A swivel unit places the parts on a conveyor belt that carries them away. The gripper can move across the part during rear end machining to save time. Instead of placing the finished parts onto the integrated conveyor belt, they can also be transferred to a handling system.

The MS40P extends the company’s multi-spindle machine series by another CNC multi-spindle automatic lathe that plays to its strengths with its flexibility and ease of retooling. 

Star CNC
Marubeni Citizen-Cincom
PMTS 2025 Register Now!
Horn USA
Marubeni Citizen-Cincom
World Machine Tool Survey
SolidCAM
Kyocera

Related Content

Swiss-Types

Does a Scanning Probe Make Sense on a Swiss-Type?

Swiss-types have limited tooling capacity, but there can be advantages to giving up some of that capacity to take advantage of a touch probe — in fact, a scanning probe — to enable in-process part measurements.

Read More
Sponsored

Choosing the Right Machine for Turned and Milled Medical Parts

The medical market is known for exceptionally tight tolerances and difficult materials, which means that selecting the proper machine is necessary to ensure a job is profitable.

Read More

CAM-Driven Lathe Questions

There can be hidden issues using legacy cam-driven lathes that can be overcome using new CNC technology. Here are three to keep in mind.

Read More
Swiss-Types

Shop Sets its Sights on Precise Tool Alignment

A Wisconsin shop has found that visual tool alignment technology has improved tool life and surface finishes for its Swiss-type lathes while increasing throughput as well.

Read More

Read Next

A Tooling Workshop Worth a Visit

Marubeni Citizen-Cincom’s tooling and accessory workshop offers a chance to learn more about ancillary devices that can boost machining efficiency and capability.

Read More
PMPA

Do You Have Single Points of Failure?

Plans need to be in place before a catastrophic event occurs.

Read More
PMTS

5 Aspects of PMTS I Appreciate

The three-day edition of the 2025 Precision Machining Technology Show kicks off at the start of April. I’ll be there, and here are some reasons why.

Read More
Star CNC